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57 ABSTRACT

A system and method for controlling and stabilizing a
satellite or other vehicle about any axis is disclosed.
Embodiments achieve this three-axis control and stabiliza-
tion with a spherical motor system or reaction sphere
capable of storing momentum in a rotor. The spherical motor
system comprises a spherical rotor having permanent mag-
nets arranged in evenly-spaced antipodal pairs. Each of the
permanent magnets are oriented with the same magnetic
pole facing outward from a center of the rotor. The spherical
motor system also comprises a stator which has magnetic
sensors surrounding electromagnets. The spherical motor
system further comprises a control system that controls
timing and duration of energization of the electromagnets
based on the detection of one of the permanent magnets by
the magnetic sensors. Such a spherical motor system pro-
vides three-axis stabilization and control of a satellite (or
other vehicle).
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REACTION SPHERE FOR STABILIZATION
AND CONTROL IN THREE AXES

CROSS REFERENCE TO RELATED
APPLICATION(S)

This application claims priority from U.S. Provisional
Patent Application. No. 61/759,033, filed on Jan. 31, 2013,
which is hereby incorporated herein by reference in its
entirety.

BACKGROUND

Satellite control systems require momentum to be trans-
ferred from the spacecraft body to rotating masses. This is
generally accomplished through electrical cylindrical
motors turning weighted wheels, one each axis of yaw, pitch,
and roll. These are called “reaction wheels.” Typical satellite
control systems include three (3) reaction wheels and asso-
ciated control modules. Satellites are limited in size and total
mass by the capabilities of the launch platforms available to
deploy the satellites in space. As such, typical satellite
control systems necessarily have a required amount of
hardware and associated mass that takes away from the mass
that can be dedicated to payload and other systems that are
desirable on a satellite.

The volume and power required by available reaction
wheel systems constrain the minimum size of a three-axis
stabilized satellite system. Current reaction wheel system
enable a minimum size of 10 cubic centimeters (see e.g.,
CubeSat) Additionally since a cylindrical motor requires
bearings which wear out, redundant units may be required
for satellite to be able to meet the necessary reliability and
life expectancy.

There have been several papers and even a patent over the
years describing the general concept of using a spherical
motor to control a spacecraft. However, no practical device
has ever been produced or developed. See, e.g., “Attitude
Stabilization of Satellites by mean of the free reaction
sphere” H. Schropl 1964 translated from the German and
made available from NASA in 1965; U.S. Pat. No. 4,611,
863, entitled, “Magnetically Supported and Torqued
Momentum Reaction Sphere,” William Isely, Issued Sep. 16,
1986, PCT Patent Application WO 2007/113666 A2 entitled
“Reaction Sphere for Attitude Control;” and NASA SBIR
Phase 1 Nogsi Aerospace, Ltd. “A Reaction Sphere for High
Performance Attitude Control,” study completed Dec. 10,
2011, all of which are hereby incorporated by reference.
None of these documents present a workable spherical
motor solution. None of these documents adequately solves
the problems presented by reaction wheel systems. All of
these documents teach considerably different control theo-
ries than are presented below.

What is needed is a spherical motor system that is capable
of overcoming the problems found in the prior art.

SUMMARY

Embodiments are directed to a spherical motor system for
control and stabilization of a vehicle in three orthogonal
axes. The system comprises a spherical rotor having perma-
nent magnets positioned in evenly-spaced antipodal pairs.
Each of the permanent magnets are oriented with the same
magnetic pole facing outward from a center of the rotor. The
system also comprises a stator having electromagnets posi-
tioned in evenly-spaced antipodal pairs that spatially corre-
spond with the permanent magnets. The stator further has
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magnetic sensors surrounding at least one of each electro-
magnet antipodal pair to detect one of the permanent mag-
nets. The system further comprises a control system that
controls timing and duration of energization of the electro-
magnets based on the detection of the one of the permanent
magnets with the sensors to provide the electromagnets with
the opposite magnetic pole of the permanent magnets in
order to attract the permanent magnets whereby momentum
is transferred between the rotor and the stator along a
controlled vector. The sensors are preferably positioned
along the stator such that they detect the permanent magnets
only on one hemisphere of the rotor at any time.

In an embodiment, the rotor comprises non-magnetic
material between the permanent magnets. The non-magnetic
material may be selected from the group consisting of
plastic, aluminum, 300-series stainless steel, tungsten, and
combinations thereof.

In an embodiment, the at least one electromagnet is
centrally positioned within a ring of the sensors. The sensors
are preferably hall effect sensors.

In an embodiment, the stator optionally includes a hollow
spherical shell surrounding the rotor. The hollow spherical
shell comprises a diamagnetic material.

In an embodiment, the vehicle may be a satellite, wherein
the stator is connected to the satellite.

Embodiments are also directed to a method for controlling
and stabilizing a vehicle in three orthogonal axes. The
method comprises similar features that correspond to the
above-mentioned system.

BRIEF DESCRIPTION OF THE DRAWINGS

For the present invention to be clearly understood and
readily practiced, the present invention will be described in
conjunction with the following figures, wherein:

The detailed description will refer to the following draw-
ings in which like numerals refer to like items, and in which:

FIGS. 1A-1F are various perspective views and exploded
views of a diagram of an embodiment of a spherical motor
system for controlling and stabilizing a satellite about any
axis. A shell (of a stator) that surrounds the rotor is shown
in FIGS. 1E and 1F.

FIG. 2 illustrates a cube inscribed in a sphere and touch-
ing the sphere at each of eight (8) vertices.

FIG. 3 illustrates an equilateral tetrahedron inscribed in a
cube which is inscribed in a sphere.

FIG. 4 illustrates two equilateral tetrahedrons inscribed in
a cube which is inscribed in a sphere.

FIG. 5A illustrates a base triangle view of the upper
tetrahedron shown in FIG. 4.

FIG. 5B illustrates a base triangle view of the lower
(inverse) tetrahedron shown in FIG. 4.

FIG. 6 illustrates a representation of the sphere geometry
for a nominal control axis of w+(ai+bj+ck).

FIG. 7 illustrates three cross sections of a sphere with
origin along the axis of rotation.

FIG. 8 illustrates each vertex of the upper tetrahedron will
have a ring of sensors arranged about it equilaterally along
with an electromagnet.

FIG. 9 illustrates intersecting fields of view for the sensor
regions and represents the sensor configuration for any given
vertex pair.

FIGS. 10A and 10B illustrate a method used to inscribe
the wedges onto the six (6) sensor circles in a prototype
configuration, showing the geometry of the sensor fields of
view.
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FIG. 11 illustrates sensor wedges for intersecting fields of
view.

FIG. 12 illustrates re-designated sensor wedges for inter-
secting fields of view.

FIG. 13 illustrates field of view cutouts for the prototype
configuration’s sensors and electromagnet.

FIG. 14 illustrates alternate fields of view using simple
drill holes.

FIG. 15 illustrates sensor wedges for intersecting fields of
view and describes twelve (12) control regions that coincide
with one of 6 sensors arranged at each vertex around an
embodiment of the spherical motor system.

FIG. 16 illustrates the status of the rotor when a sensor
detects the presence of a magnet.

FIG. 17 illustrates a linear combination of vectors to
achieve the desired directional momentum.

FIG. 18 illustrates that if the wedges are stripped (see FI1G.
17), leaving only the vectors, the determination of the
relationship between the vectors shown in FIG. 18 can be
made.

FIG. 19 illustrates the placement of the sensor pods in an
embodiment of the stator cage.

FIG. 20 illustrates the printed wiring board (PWB) design
of the sensor pods.

FIG. 21 illustrates the path of a magnet as it passes
through the field of view of the vertex sensors.

FIG. 22 illustrates an example with two circles of radius
r, and r, whose centers are d units apart.

DETAILED DESCRIPTION

It is to be understood that the figures and descriptions of
the present invention may have been simplified to illustrate
elements that are relevant for a clear understanding of the
present invention, while eliminating, for purposes of clarity,
other elements found in a typical three-axis control and
stabilization system or typical three-axis control and stabi-
lization method. Those of ordinary skill in the art will
recognize that other elements may be desirable and/or
required in order to implement the present invention. How-
ever, because such elements are well known in the art, and
because they do not facilitate a better understanding of the
present invention, a discussion of such elements is not
provided herein. It is also to be understood that the drawings
included herewith only provide diagrammatic representa-
tions of the presently preferred structures of the present
invention and that structures falling within the scope of the
present invention may include structures different than those
shown in the drawings. Reference will now be made to the
drawings wherein like structures are provided with like
reference designations.

Described herein are embodiments of a system and
method for controlling and stabilizing a satellite or other
vehicle about any axis. Embodiments achieve this control
and stabilization with a spherical motor (or “reaction
sphere”) capable of storing momentum in a rotor. Such a
spherical motor provides three-axis stabilization and control
of a satellite (or other vehicle), replacing the three (3)
reaction wheel systems normally used in satellites. Since
embodiments replace a reaction wheel system, embodiments
may be referred to as a reaction sphere.

As discussed above, satellite control systems require
momentum to be transferred from the spacecraft body to
rotating masses. This is generally accomplished through
reaction wheels—electrical cylindrical motors turning
weighted wheels, one each axis of yaw, pitch, and roll. A
spherical motor can accomplish this in one device for all
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three axes at once, reducing volume, power, mass and
complexity. By replacing reaction wheels, embodiments
enable satellite solutions not possible with current technolo-
gies.

A reaction sphere reduces both the volume and power
required to control a satellite, and enables three-axis stabi-
lized satellites of a cubic foot or less, greater than a ten
(10)-fold reduction in weight, volume, and complexity ver-
sus reaction wheel systems. Embodiments of the reaction
sphere as described have no bearing surfaces (being mag-
netically levitated) and, therefore, has no wear items increas-
ing reliability and expected life of the vehicle. Other
embodiments of the reaction sphere have a single bearing
surface, that of the rotor itself which may be magnetically
levitated.

With reference now to FIGS. 1A-1F, shown are various
views and exploded views of a diagram of an embodiment
of a spherical motor system 100 for controlling and stabi-
lizing a satellite about any axis (a reaction sphere). The
spherical motor system 100 includes a rotor 102, a stator
cage 104, and in this case, an electronic control module 106
(illustrated with a block diagram) connected to the spherical
motor system 100. In the case of a spherical motor 100, the
rotor 102 is a sphere, and the stator 104 optionally includes
a hollow spherical shell 114 (shown only in FIGS. 1E and
1F), or shape approximating a hollow spherical shell, ulti-
mately attached in this case to the body of a satellite (not
shown). Rotating the rotor 102 will cause an equal and
opposite reaction in the stator 104, providing momentum
transfer between the two, and enabling control of a satellite
or other vehicle about any axis. In effect, the connections or
attachments between the satellite and the stator 104 impart
movement and momentum to the satellite. This allows the
spherical motor system 100 to control the movement and
stabilize the satellite about any axis.

Note, for illustration purposes, rotor 102 is shown inside
body of stator 104 without shell 114 of stator 104. The shell
114 is only shown in FIGS. 1E and 1F. Fully assembled, the
spherical motor system 100 would include shell 114 of stator
104 surrounding rotor 102 inside remaining stator cage 104.
Shell 114 would be connected to stator cage 104.

The rotor 102 is a sphere of an appropriate mass, in which
is embedded a plethora of permanent magnets 108. These
magnets 108 are arranged in antipodal pairs and all with the
same magnetic pole facing outward. The rotor 102 can be
made of any of a wide range of non-magnetic material, e.g.,
plastic, aluminum, 300-series stainless steel, or tungsten
based on the specific application’s mass requirements.

With reference particularly to FIGS. 1C and 1D, the stator
104 contains a plethora of electromagnets 110, also arranged
in antipodal pairs, surrounded by a ring of magnetic sensors
112 in close proximity (only one of each electromagnet 110
pair need be surrounded). These electromagnets 110 are
energized with the opposite pole of the permanent magnets
108 in the rotor 102 in order to attract the permanent
magnets 108 and, consequently, transfer momentum
between the rotor 102 and stator 104 along a controlled
vector.

The control module 106 is used to determine when to
energize the electromagnets 110 and for how long. Attitude
Control Software (ACS) code operating in the spacecraft
instructs the control module 106 as to which of the magnetic
sensors 112 are to be recognized as the firing stimulus for the
electromagnets 110. When the appropriate sensor 112
detects a permanent magnet 108, the electromagnet 110 pair
is turned on, attracting the permanent magnet 108 pair
toward it, inducing rotation of the rotor 102 and stator 104
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about the pre-determined axis. The control module 106 also
uses the magnetic sensors 112 to determine the current
rotation speed and axis of the rotor 102 relative to the stator
104. This is necessary to determine the electromagnetic
pulse length (which will need to shorten with increased rotor
102 speed) and to feedback rotation axis and speed to the
ACS code.

This arrangement of like-pole out antipodal pair magnets
in the rotor 102 will also allow for the magnetic suspension
of the rotor 102 inside the stator 104 shell forming a
magnetic bearing. Novelty of embodiments described herein
is found at least in the control theory of the rotor 102 which
is enabled by the construction of the rotor 102 described
herein. Additional novelty of certain embodiments may be
found in the magnetic levitation described herein. As
described, the rotor 102 is a sphere of non-magnetic material
in which is embedded a plethora of permanent magnets 108.
These magnets are oriented with all the same pole out (S
pole out in the prototype) and in antipodal pairs, i.e., each
pair is two magnets 108 directly across the diameter of the
sphere 102 from each other.

Because the permanent magnets 108 are all same pole out,
the magnetic sensors 112 only have to detect one pole, and
the electromagnets 110 in the stator 104 only have to be
energized with N pole ‘in’ (toward the sphere 102). The shell
114 of the stator 104 may be a diamagnetic material like
pyrolitic graphite. The spherical motor system 100 acts like
a free-flying stepper motor where short pulses of the elec-
tromagnets 110 impart momentum to the rotor 102, and then
are turned off allowing the rotor 102 to continue past the
electromagnets 110 and freely spin. The sensors are prefer-
ably positioned along the stator 104 such that they detect
permanent magnets 108 only on one hemisphere of the rotor
102 at any time.

An additional aspect of the present design is that embodi-
ments are scalable. For example, one prototype includes a
2.25" rotor (chosen because this size is a convenient size for
testing—the diameter of a billiard ball which was used as an
early test object). In embodiments, the smallest size would
be approximately a one inch (1") rotor due to implementing
the geometries. There is no theoretical upper limit. For
example, rotors as large a several feet in diameter and
weighing hundreds of pounds have been discussed. There
are actually practical uses for such large devices, such as
being used to control extremely large satellites, especially if
more than one spherical motor system 100 were to be
mounted. The Hubble space telescope or even the Interna-
tional Space Station (ISS) could be controlled by such
devices. If a number of spherical motor systems 100 were
used—e.g., eight (8), one in each corner of a large cubic
satellite—the spherical motor systems 100 would ‘appear’ to
the flight control systems as if there were only one large unit
mounted in the center of the satellite geometry. In such an
implementation, the spherical motor systems 100 would
provide eight (8) times the control authority (momentum
transfer) and eight (8) times the redundancy (since the
spherical motor systems 100 could operate on fewer devices
albeit with less total momentum transfer per unit time).

Early prototype tests indicate that the power efficiency of
the spherical motor system 100 as described (as measured in
mass versus momentum transfer per unit time) is roughly the
same as a single reaction wheel. This combined with the
reduced size and reduced complexity of the spherical motor
system 100 should provide a three (3) to four (4) times
weight and volume savings over reaction wheel systems.

This following is a discussion of the geometry of an
embodiment of the spherical motor system 100 and the
mathematics necessary for control of the spherical motor
system 100. Where possible, this description uses Cartesian
coordinates in three (3)-axis space and avoids the use of
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trigonometric relationships. The description begins by look-
ing at the geometry of the outer sphere (the stator 104), and
the equations, relative to the radius of the outer sphere that
make up the spherical motor system’s 100 coordinate space.
In this section, the coordinates of the control node vertices
given the coordinate space relative to the radius of the rotor
102 are derived. The geometry of the sensor suite that makes
up each control node of the rotor 102 and how it is
constructed is discussed. The rotated coordinate space basis
vectors for each control node are derived. These basis
vectors will be used to form the translation matrices that will
be used to determine the direction the sensor will need to
pull the rotor 102 given a particular control quaternion.
Next, the equations of the desired direction of rotation at
each control node based on a given control quaternion are
derived. Finally, the rotational vectors derived from the
control quaternion into 2D directional vectors for each
control node are translated.

Part 1: Generalized Theory

The control theory described below is not restricted to the
tetrahedral arrangement of sensor pods described in the
following sections. Any arrangement that contains a plethora
of antipodal pairs of electromagnets and sensor pods can be
realized. The smallest theoretical implementation is three (3)
pairs on orthogonal axes. There is no theoretical upper limit.
What follows describes one instance of this theory—the way
a prototype may be built using a tetrahedral arrangement.

Geometry of the Prototype Outer Sphere (Stator Shell)
(Eight (8) Control Nodes)

Some definitions:

Vertex: a point in space representing the corners of a

polyhedron

Edge: A line connecting two vertices of a polyhedron.

Face: a flat surface of a polyhedron, bordered by edges

Adjacent vertices: two vertices on a polyhedron that are

connected by an edge with no vertices in between.

The coordinate space is defined with origin at the center of
the sphere. The positive x axis is oriented horizontally and
to the right. The positive y axis is oriented from center to
front, and the positive z axis is oriented vertically and up.

Given a sphere of radius r, a cube 204 inscribed in the
sphere 202 touches the sphere at each of eight (8) vertices
(see FIG. 2). The cube is rotated 45 degrees on the x axis and
then a little more than 54 degrees on the y axis to bring one
vertex straight up and two adjacent vertices above and along
the z axis. The long diagonal of the cube is a line that extends
from one corner of the one face of the cube through the
center of the sphere to the opposite corner of the opposite
face of the cube. The diameter d of the sphere is 2r. The
above rotation puts one of the cube’s long diagonals along
the z axis. Since, by definition the length of a diagonal of a
cube of side s is

d=2r=sV3

This is verified by observation. A cube with sides s has face
diagonals of ¥2s. On side plus one face diagonal forms a
right triangle with the long diagonal as the hypotenuse. By
the Pythagorean Theorem, s>+(V2s)*>=3s® which yields the
result.

The sides s of the cube are of length:

2
§=—r

V3

A face diagonal is defined as the diagonal formed from
one corner of the cube to the opposite corner of the square
that makes up one face of the cube. Three face diagonals are
formed from the upper vertex of the cube and descend along
the cube’s faces to the three vertices that are adjacent to the
lower vertex. These three points are connected to each other
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along additional face diagonals of adjacent cube faces to
form an equilateral tetrahedron with edges e of length (see
FIG. 3—one tetrahedron 306 inscribed in both the sphere
302 and the cube 304).

W2

e= r

V3

Which stands to reason since the face diagonal e of a square
with sides s is
e=V2s

A similar equilateral tetrahedron 408 (in addition to the
tetrahedron 406 already placed within the cube 404) is
formed with edges e upside down and touching the four
unconnected vertices of the cube inside the sphere 402 (see
FIG. 4—a rendering of the entire tetrahedral construction).
Each Vertex of the cube described above represents the
location of a control node. The control nodes correspond to
the placement of the Electronic Control Modules 106 in the
prototype configuration.

Next the geometry of the base of one of the tetrahedrons
is examined. It is an equilateral triangle. If a line is drawn
bisecting each vertex angle of the triangle these line seg-
ments will intersect in the “center’ of the triangle. In the case
of the base of each tetrahedron described above, the center
of the base triangle will be on the z axis. The apex of the
triangle is on the z axis as illustrated in FIGS. 5A (base
triangle view of the upper tetrahedron) and 5B (base triangle
view of the lower (inverse) tetrahedron).

Note that in the diagrams of FIGS. 5A-5B, the view is
looking down the positive y axis. These two triangles are
parallel to each other, and half the distance between them is
the x-y plane which is also parallel to the two base triangles.
The height B of these base triangles can be determined from
the Pythagorean Theorem as well. Note that in this case B
represents the height of the entire base triangle and,

e = (%)2 +B?
Which, when solved for B becomes

V3

Te:\/?r

B=

The length b from any vertex of the triangle to the center
point is %3 the height of the base triangle. This is known
because the triangle formed from the left corner of the base
triangle, its center and the midpoint of its side is a right
triangle with 30, 60, 90 degree angles. The height of this
triangle (i.e., determined because the sin(30°) is %) is b/2
and since

B=b+ —3b
)

which results in
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When substituting for B above:

This makes the ratio of e to b as

e
V3 =—
b

Finally, the height h of the tetrahedron (i.e., derived by using
the Pythagorean Theorem on the triangle formed from the
tetrahedrons base vertex to the center of the base (b), its
height to the apex (h), and the line between the apex and the
base vertex (e)) from its apex to its base is

ﬁuiﬁ\

LY

=

(5l
4

=3

The next step is to find the height ¢ of the center of the
sphere above the base triangle. The center of mass of the
sphere is the center of the sphere. The distance from that
point to a vertex of the tetrahedron is a simple radius of the
sphere (by definition, r) and the distance from the vertex of
the base to the center of the base triangle is b. By the
Pythagorean Theorem:

) ]2 R
rl +c

2 _p2 2=(
¥ +cC 3

and therefore

szrz_(

This means that the rotation point ¢ around which the
tetrahedron rotates (center of mass) is

22 ]2 o 8y
rl =rl-=|=%
) =r(-5)-5

above the base of the tetrahedron, where r is the radius of the
sphere in which the tetrahedron is inscribed. The next step
is to locate each of the eight points that make up the vertices
of the structure in terms of X, y, z coordinates.

Each base triangle is r/3 above or below the x-y plane. If
the tetrahedron is labeled cffyd with as the vertex on the y
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axis, v is the vertex in the negative x axis, d is the vertex in
the positive x axis and the apex of the tetrahedron labeled as
a on the z axis; then the coordinates of each of these vertices
(Note that the x terms for V, and V, are e/2 and the z terms
are b/2) V in terms of the radius of the sphere is:

Va=(0,0,n

2\/7 r]

Vg = (0, Tr, -3

Vy:(_\/? vz ]

B3
L (Y
s\ Fr I

The vertices of the lower tetrahedron are similarly labeled
a'py'0'. The lower vertex becomes V'a, the vertex on the
negative z axis is V', the vertex in the positive x axis will
be V'y, and the vertex in the negative x axis will be V'3. This
means that Vo and V'a are diametrically opposed as are V3
and V'8, Vy and V'y, and V9 and V'6.

Therefore the coordinates of the prime vertices become

Ve =1(0,0,-n)

2v2
V[;»:(O,— \/—r, f]
3 3
-
3

(=3
)

3 "3
N
Basis at Each Vertex From the “Geometry of the Outer
Sphere” above, the coordinates of each vertex of the primary
tetrahedron are defined in terms of the radius of the sphere.
These are shown in Table 1:

vy =

v ( 2
=|-—r
5 NGy

TABLE 1

Vertex Position Vectors (from above) Unit Vectors

Vo =(0,0,1) Vo =(0,0,1)
W2 W2 1
Vﬁ_ ’ 3 r’__] Vﬁ_[O’T’_g]
v [V s v [ VT VT
Gt EE TR (i Yol
v (V. (VI OVE
e e =lE 30
Via=1(0,0,-1) Ve =1(0,0,-1)
242 242 1
v (o 22, vy [0, 22 L
3 3 3 3
VI VT o VI VT
A S v, =2 2
37 33 V3 33
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TABLE 1-continued

Vertex Position Vectors (from above) Unit Vectors

(VT Tk (VT VT
By o EEY

The above lists the vertex position vectors of the primary
tetrahedron on the left. The normalized forms of these
vectors (which assumes a sphere of radius r=1) is given on
the right. In general bold type indicates a normalized vector.

The next step is to determine the basis vectors for the
coordinate system in which the x-y plane is tangent to the
sphere at each vertex. For vertices 3, v, and 9, the y axis will
be in a similar direction (note that since these points are
below the equator on the sphere, the y axis will be “tilted
outward” slightly, but still orthonormal to the sphere’s x
axis) as the y axis at the origin of the sphere and the x axis
will be parallel to the x axis of the origin of the sphere. The
X axis vector, then for p, y, and § will be the unit vectors
formed from the cross product of their normalized vectors
(VB, Vy, and V9) with the normalized Va vector (Va, which
is on the y axis). The result will be parallel to the sphere’s
x axis. The y axis vector for 3, y, and § will be the unit vector
formed from the cross product of the vertex with the x axis
vector for the coordinate. For example, for vertex f3, pi is
made from the cross product (note that the angle between
vertex vectors is approximately 109.471°, which is a little
less than the 120° found in the relationship between the base
vertices and the center of the base triangle) of V| and Va,
IBil indicates its magnitude and the unit basis vector for the
p vertex will be ip. The relations are as follows.

Vay Ve = VacVgy — ﬂ
3
Bi=VaxVg= Var Vo — Va Vg | = 0
Vax V,By - Vay V,Bx 0
22

- 2\/7]2 2 2
1Bil = (—T +(OF +(0) = 3

Note also that the magnitude of {3, is not 1. The magnitude
of a cross product is given as la|[blsin 6 where a and b are
the vectors and 0 is the angle between them (approximately)
109.47122°. In this case the magnitude of V,, and V,; are
both 1 making the following relationship true

. 2
sinf = ——

Similarly, for vector Vi, B; is made from the cross product
of ig and V,,, IB/| indicates its magnitude and the unit basis
vector for the V3 vector will be js. The relations are as
follows.
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Viyipe = Velgy 1
Bi=Vexig=| Vadp = Vasip: |=| 3
Visigy — Vayige W2
3
. 02(1)2+(2\/7]2_ 1.8 3,
A=) \757) =455 =3
0
1
. B =
Jﬁzmz 3
W2
3

Note that because iy is normal to Vi, the magnitude I, is
1. A quick look back at the geometry of the outer sphere will
verify these results. The i is a unit vector parallel to the x
axis and points in the negative x direction. In this case it is
also perpendicular to the z axis because of the definition of
the location of 3. The jg is a unit vector perpendicular to the
x axis but below the x-z plane and pointing upwards (in the
positive y direction). It is also perpendicular to (3. This is
indicated by its positive y and z coordinates. A quick check
will reveal that the length of jg is 1.

It is important to look a little more closely at the deriva-
tion of the j basis vector as it is the cross product of a cross
product. Note that the calculation takes the cross product of
[ with the first cross product found when deriving the i basis
(B,). Effectively 3, and f3, will form a plane that is orthogonal
to the original vector 3. This, by definition, is what is desired
since that means it is tangent to the sphere at . The new
vector will also point in a similar direction as a. Also the
magnitude of §; (which is perpendicular to B) is given from
the following.

I, 1=liglIBlsin 90°=(1)(1)(1)~1

The v and 9 basis vectors are derived in the same way, first
by taking the cross product of each with a, and then by
deriving the second basis vector by taking the cross product
of the prior vector with the point vector.

For y the equations yield the following.

V2
Vay V)’Z - Vaz V)’y T
Yi= Va X Vy = Vazvyx - Vaxvyz = \/7
Vo Vyy = Vay Vi V3
0

1
2
iy=|7—‘_|= N
il | -
0
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-continued
and
1
V)’yi)’l_v)’li)’y 2\/?
¥ =V iy = | Vysigs = Vs | = _é
Viiyy — Vg
XYy Yy 2\/7
3
otz (5]
yil= |- -
! 23 6 3
NEREE
“V3%t% 3%
NE:
V36
=1
1
W3
P70
T il 6
W2
3

For 8 the equations yield the following.

V2
Vayvéz - Vazvéy T
8 = Vax Vs = VarVor = VaVs [=| V2
Vax Véy - Vay Véx \/?
0
\/7]2 ’ W2
Gl = (_ + +(0? = ==
|6 \/ 3 (0) 3
1
s 2
b= = vE
|6 —
2
0
and
1
Vayios = Vadey | | 2V3
. . . 1
0j = Vs xis =| Vazigx — Voxis: | = -3
Vexlsy — Voylsx
Y Y 2\/7
3
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-continued
1
23
J& = 6—J = —l 3
161 6
22
3
10
For the o point the y axis is oriented in the direction of 3 and
put the x axis parallel to the sphere’s x axis. This yields the
following results.
15
ViyVaz = Vi Vay ﬂ
05 = Vo Vo =| ViV = VaVee [=|
Ve Vay = Vgy Vor 0
20
2
2V2 2v2
sl = (i] opsor = 22
3 3
1
@
ip=—=|0
“ el 2
0
and
Vayiaz - Vaziay 0
@)= Vo Xiy = | Vagior = Varlar |=| 1 30
Vaxiay - Vayiax 0
lajl = V(07 + (D7 + (07 =1
0
o =
Ja= it = 1
7 o

Note that the derivation of each set of the basis vectors 4
described above produces four orthonormal bases, one for
each vertex, in the original coordinate system.

The basis vectors for the tangent planes oriented at each
point of the control tetrahedron have now been derived. The
next step is to determine the rotational direction at each
vertex given the Control Quaternion, which defines the
desired rotational direction and speed. The basis vectors for
the primed points have also been derived as these would be
similar to the unprimed vectors with the only difference
being the sign of each term in the j component. See Table 2.

45

50

TABLE 2

1
A 55
w=— 2|0
||

[
C el o 60

Bi

ig= 0 =
TN
65

TABLE 2-continued
0
1
j:ﬁ: 3
T
W2
3
1
2
iﬁg_‘_l: N
A
0
1
243
] :ﬁ— !
Yyl 3
22
3
1
s 2
is=r—=| V3
&il -
0
1
W3
d; 1
Js m_ e
W2
3
e
o
ir=—=|0
= o] ;
, 0
o
S A |
YT
e
Ao
T o
0
1
B _2
Jgg = = 3
7B W3
—
1
, "2
. Vi
iy =g V3
2
0
1
243
i /AR
LT 5
W2
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TABLE 2-continued

1

. i
1(5/ = — =
161 | -—

L
T I
2V2
SALL

In the next section, the equations needed to control the
sphere about an arbitrary axis are derived.

Control Axis

In this section, the equations for the direction of rotation
for each vertex point given a desired rotation about some
arbitrary axis are derived. The controller will supply a set of
values which represents the desired axis of rotation of the
inner sphere. This set of values will be given in the coor-
dinate space of the reaction sphere as it has been described
in Geometry of the Outer Sphere.

The control rotation can be given by a set of values
containing a vector v indicating the axis of rotation and a
scalar value o indicating the angular velocity.

w+v=w+(ai+bj+ck)

The basis vectors in three-space that define the origin of the
environment for embodiments of the spherical motor are (i,
J, k) (that is, the center of the rotating sphere). The values (a,
b, ¢) represents a point on a unit sphere that defines the
location of the positive axis of rotation. It is required to be
a unit vector. Therefore

a?+b%+c7=1

Using the right hand rule (the right hand grips the axis the
thumb points in the positive direction of the axis of rotation
and the fingers point in the positive direction of rotation
(positive w) allows precise definition of the desired direction
of rotation of the sphere. FIG. 6 illustrates a representation
of the sphere geometry for a nominal control axis of w+(ai+
bj+ck).

This angular velocity given in co becomes something that
must be projected onto the electronic control modules 106.
That is, the desired rotation of the sphere must be expressed
in terms of the two dimensional rings of sensors positioned
around the sphere. Therefore, this direction of motion must
be converted into a linear direction relative to the four
orthonormal vertices calculated in “Basis at Each Vertex”.

Rotation will occur on the plane perpendicular to the
vector that represents the control axis. Any point of the great
circle plane that intersects the point and the axis point (and
the center) will define a rotation vector perpendicular to it.
If the point on the sphere is the axis point or diametrically
opposed to the axis point, then the surface vector magnitude
is 0 and its direction is undefined.

The vertex vector is defined as v and the axis vector is
defined as u. A simple cross product between the two vectors
will yield a vector perpendicular to the plane defined by
them both. That vector should be the vector of the desired
spin direction in the plane of the sensor.

Uuxv
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The following vectors in Table 3 describe the positions in
space of the eight sensors of the prototype configuration.

TABLE 3

Vo=00,0,1)
Via=100,0,-1)

W2 1
vy=lo, 22, =
ﬁ[’ 3’3]

vy=(0.-22 4]

V2 V21
55
, (V2 V21

VF[W’T@]
v Y2 V21
(-5

, [ V2 V21

55

Therefore, the angle of the rotation vector for each sensor is
the cross product of its position with the vector of the axis
determined from the control axis. If the coordinates of the
sensor vectors are labeled with subscripts X, v, z, to indicate
the coordinate represented and label the parameters of the
control axis a, b, ¢ as above, then the Cross Product
directional vector U for each sensor becomes as follows in
Table 4.

TABLE 4

1l
<]
<
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TABLE 4-continued

US 9,475,

Ug=uxVg

bﬁz - Cﬁy
=| B —ap.
aB, ~ b

1
-30b+2v2¢)

U, =uxV,
byz —CYy
=| S¥x —ay:
ayy —byx
1
- §(b - \/70)
1
g(a— Vée)

V2
e

(a—\/?b)

Us =uxVs

bd, —cdy,
=| ¢d; —ad,
ad, —bd,

—%(b—ﬁc)
@a+V6c)

Wl —

(a+\/§b)
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TABLE 4-continued

U; =uxVj

bd, -8,
=| cd, —ad,
a8, - b3,

1

3(b-V2¢)
1

= —§(a+ \/60)

V2
T(a+\/§b)

The prime vectors are identical to the corresponding
vectors except for the sign. This is verified by the fact that
each prime vector is diametrically opposed to the corre-
sponding vector. This provides the rotation vectors in space.
The next step is to determine the projection of these vectors
relative to each sensor.

Projection of Directional Vectors

In this section, the direction of the Control Axis’ rotation
is derived in terms of each sensor vertex. The derivation of
the Directional Vectors in terms of the sensors at each vertex
of the primary tetrahedron requires a translation of basis
from the coordinate space of the sphere to the coordinate
space of the plane tangent to the sphere at each point in the
control tetrahedron. It is known, from the derivation of the
Directional Vectors, that they are tangent to the sphere,
which means they are coplanar with the plane defined by the
basis vectors derived above in the section named “Basis at
Each Vertex”.

Since the directional vectors are coplanar with the local
basis vectors, there is no need to translate the third dimen-
sion. That basis is a unit vector in the same direction of the
vertex vector and its component for the Directional Vector
will always be O.

The translation matrixes for the conversions are formed
from the orthonormal basis vectors derived in the Basis at
Each Vertex. Since the magnitude of that vector is r, the
coordinates of k is the same as its origin point with the r
factors removed. This becomes the third row in the basis
matrix.

100
My=lix jo @]=|0 10
00 1
-1 0 0
1 22
i o I
Mg=[is Jsg Bl= 3 3
o W21
3 73
1 1 V2
2 W3 V3
M,=[k J 7]= _ﬁ L _ﬁ
2 6 3
o W2 1
3 73
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-continued -continued
Up=Mz'Ug
11 V2 L o L
P VB . P
1 2v2
My=[ic s 6]=| Y3 1 V2 |0 3 5 La
& T T3 3
g ¢ ) W2l
W2 1 o 22 _12 W2
0 _— - 3 3 a
3 3
1
10 3(b+2V2¢)
And for the prime vertices: h

15

1o o U=y
My = i = _0 10 L E) 0 !
o =l Jo @ 1= - B B _g(b_ﬁc)
o 0 -l 1 122 | 1
=|-—= -z —| xla-vV6¢)
20 W3 6 3 3
2
1 0 0 _ﬁ _ﬁ _l —T(a—\/?b)
G 3
o Lo a2 L
My =lig jy Fl= -3 T3 —g(\/?a+b—4\/7c)
W1 2 = 1
0 - 3 E(a - \/?b)
0
1 1 V2 30 Ul = Mz Us
e =
W3 V3 1 V3 . L
My =ty jy y1=|¥3 1 V2 22 “3lb-V29)
2 6 3 1 1 22 || 1 NG
o V21 35 “loayz 6 3 zla+Vee)
3 3 2
VI |2y
V3 3 3 3
1
—8(—\/?a+b—4\/70)
BER S £ 40 - 1
2 Tofz V3 —5la+ V3'b)
Mg =iy Jjo &'1= _ﬁ 1 £ 0
2 6 3
W21 )
0 -—= 3 45 Note that, as expected, the z coordinate of each translated
vector is 0.
For the vector U in the new coordinate space (call it U"),
the basic conversion equation becomes as follows.
30 -1 0 07-b] [-b
U'=M"U=M"U (where M~'=M7 for orthogonal Ul = M;,l Uy=|0 -1 0 a |=|-a
matrices) o o -1llo 0
Therefore, to determine the desired direction of spin about
an arbitrary axis for the eight (8) vertex prototype, it then 55 Ul = MU
becomes a simple matrix multiplication to translate the s ms
Rotation vectors into the 2D coordinate space of each sensor 1 0 0 %(b 242 <)
node. These are derived for the eight (8) vertex configuration 1 22 |
as follows. =0 -3 - ~za
60
0 _2\/7 W2
3 3 a

65

1
3
1
o[ & b -3(b+2V2¢)
0|l -a|=|-a = —-a l
1

<
<
<
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)’/:M);l b4
1 3
SR R
1 1 W2 1
=55 § "3 || ~3la-Vee
ﬁ ﬁ l g(a—\/—b)
vz 3 3
1
8(\/?a+b+4\/70)
= (a—\/?b)
0
UYy = Mz Uy
1 R L
2T 3(b-V2¢)
1 1 W2 1
:_ﬁ g —T —§(a+\/gc)
V2oV2 L V2 Ey)
NoE
é(—\/?a+b—4\/fc)
Tl aeVay)
0

The rotational vectors of the sphere at each sensor vertex
for the primary (upright) tetrahedron have now been
described in terms of the rotational parameters of the control
axis. The directional vectors for the secondary (primed)
tetrahedron vertices for are not derived two reasons. First,
they are not derived because they will differ from the
primary vertices only in sign, and second, they are not
derived because they form a special relationship with the
primary vertices. This relationship will be described in detail
in the following sections.

Deriving the Control Axis from the Vertex Vectors

In this section it is assumed that the rotation of the sphere
is read from the vertex sensors and that it is desired to derive
the current axis of rotation parameters from that view. This
is an inversion operation from the sections above called
Projecting Directional Vectors and the Control Axis.

In this instance, the x and y components of linear direction
of rotation of the sphere are given at each of the four
vertices. The primary vertices are derived first. Note that in
every case, the matrices M represent orthogonal basis vec-
tors. These matrices are inverted in order to derive U' from
U. In the opposite case, U' is known and it is desirable to
derive U. To invert this operation, the un-transposed matrix
is used as follows.

10 07 Vax Vax
Uo=MU,=[0 1 0| v =]V,
potlo 0
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-continued
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This provides the Vectors U of the sphere’s rotation in
terms of the sphere’s origin basis vectors. Because of the
way these four vectors were derived above, all four of them
are orthogonal to the control axis. Therefore, the control axis
should be able to be derived as the cross product of any two
of the above vectors as shown in Table 5.

TABLE 5
U, x Ug Up x Uy U, x U, Uy x Uy,
U, x U, Upg x U, U, x Ug Us x Up
U, x Uy U x Uy U, x Uy Uy x U,

The twelve above cross products will produce exactly
twelve vectors, six of which will be parallel to each other
and parallel to the control axis and six will be parallel to each
other and diametrically opposed to the control axis.

One of the translated vectors is designated as U,, and
another as U, where m and n are either a, f3, v, or 8. Then
the equation of the unit vector in the direction of the control
axis becomes as follows.

u=U,xU,
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and so

Upx U,
u=
[Un X Unl

After having performed above cross product, the resulting
vector u will be either equivalent to the control axis or in the
opposite direction of the control axis. The next challenge is
to determine which.

The unit vector of the vertex from which U, was derived
is designated as V,,. Then, if the original cross product is
performed again using the newly derived control axis vector
u, a new vector U, that is either in the same direction or in
the opposite direction of U,, should result.

U=uxV,,

The dot product of U,, and U, will produce a measure of
the angle between them.

If U, and U, are normalized then first this equation
reduces to the following.

0=cos™! U,-U,

The value of 6 will either be 0 or . If it is 0, then u is
calculated in the correct direction. Conversely If it is 7T, then
—u is in the correct direction. As a shortcut, the calculation
of the inverse cosine may be skipped. If the dot product of
the two unit vectors is 1, then u is in the correct direction.
Conversely If the dot product is -1, then —u is in the correct
direction.

The above illustrates how to derive the direction of
motion at each vertex given an axis of rotation and reversed
the process and derived the axis of rotation given the
directions of motions from any two vertices. In the next
section, the problem of determining the linear velocity of a
point on the surface of the ball at each vertex given the axis
of rotation and the angular velocity of the sphere is illus-
trated.

The next step in the analysis is to determine how much
momentum to impart at each of the vertex points. To arrive
at this value embodiments must make use of the angular
velocity (w) parameter provided in the Control Axis. The
linear velocity L of the control axis at each of the four vertex
points needs to be determined.

Projecting Linear Velocities

In this section the amount of rotational velocity w to
impart on the rotating sphere given an arbitrary Control Axis
will be derived. In the Control Axis that value w is given to
mean the desired change in angular velocity. The linear
velocity 1 of a point on a sphere is its angular velocity times
the distance of the point from the axis. This distance is the
radius of a cross section of the sphere that is orthogonal to
the axis of rotation. The cross section is a circle with a radius
i. FIG. 7 illustrates three cross sections of a sphere with
origin along the axis of rotation. The cross sections are
orthogonal to the axis of rotation, where the radius i of a
cross-section h from the center of the sphere is i=
‘/rz—hz(—rshsr).

If the distance of the cross section is h from the center of
the sphere, then using the Pythagorean Theorem, the dis-
tance, i, from the axis of rotation is given as

i:\/rz—hz
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Here r is the radius of the sphere. Since the rotational
velocity a is the same for all point on the sphere, this gives
the linear velocity 1 of any point on the surface of the sphere
as

1 :io):o)\/rz—h2

Given an axis of rotation given by the Control Axis, the
next step is to determine the h value for each vertex. The
vertex can be said to be a point on the circle formed by the
orthogonal cross section at h (See FIG. 7). The value h can
be determined by finding the length of the projection of the
vertex’s position vector V onto the Control Axis which is
designated as u. The next step is to look at the vertex
position on the unit sphere. Therefore, the unit Vector V is
used.

The length of the unit projection h' of V onto u will be the
dot product of V and u

h'=V-u

This will give us the factor for the height of the vertex
above or below the center of the sphere. The actual height h
of the vertexes must be multiplied by r.

h=rh’

For the four vertexes of the primary tetrahedron, the h
values are (in terms of the Control Axis a, b, c) as follows.

iy = Vo ru=[0)a@) + O)B) + (1)()] =¢

242 1 W2 h-
o =Ve-u= [(0)(“”(7](“*(‘5](“)] ==

Hy=Vy-u
V2 ( V2 ] 1
- [(—ﬁ]m) +=5Jon (-5 )0
B \/ga + ﬁb +c
e
hs=Vs-u
Vo ( V2 ] 1
%&ﬂ@+“?w“ﬁﬁ4
_ V6a-vV2b-c
-
For the four vertexes of the prime tetrahedron, these
values are as follows.
iy =V -u=[0(@) + 0O + (-1)()] = ~c
, W2 1 2W2b-c
My = Vg = [(O)(‘” +(‘T](b> *(5]@} T3
iy =

e B |-

By =V -u
[ o (o (3)e]
_ V6a-\2b-c
3
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Therefore the linear velocities for the eight vertices of the
prototype configuration are given by

l=iw=wVr?-h? :a)\/rz—(rh’)2 :rw\/l -t
So that

Iy =rov1=c2
zﬁb—c]z

lg=rw 1—( 3

ly:rw\/1+(—\/ga+ﬁb+c]2

3
\/ga—\/?b—c :
ls=rof1l-| —————
3
and
Iy =rwy 1= (=c)?

[\

L= 1 ( \/Tb—c]2
= royf1-|- 3

-]

Ly :rw\/l_(_wr

3

[=}

Notice that the following relations are true.

1,=1, where m=a,p, y, and d.

This gives the amount of change in linear velocity to
impart to the rotor 102 at each vertex for any control
quaternion in terms of the given desired change in rotational
velocity and the axis of rotation. If the radius is given in
centimeters and co is given in rad/sec, then the conversion
works out to cm/s.

This section has been about the geometry of the outer
sphere and some of the more generic mathematics surround-
ing the embedded tetrahedrons inside a sphere and cube. The
next section begins the discussion of the specific implemen-
tation of the prototype eight (8) vertex configuration reaction
sphere and the geometry of the sensors at each vertex.

Part 2: Implementation Theory

Geometry of the Vertex Sensors

In this section the sensor set and the relationship of the
magnetic sensors 112 around each vertex are described. The
assembly will consist of an inner sphere (the rotor 102)
which will have an even number of permanent magnets 108
arranged around it in evenly spaced antipodal pairs. The
maximum number of permanent magnets is dictated by the
field of view of the hall effect sensors 112. The magnets must
be far enough apart that no sensor pod can detect more than
one permanent magnet at any given time. This sphere 102
will be suspended within an outer spherical “cage” (the
stator cage 104), to which electromagnets and sensor pods
will be attached in antipodal pairs. The prototype will have
four (4) sensor “pods” and eight electromagnets arranged
into the two tetrahedrons described in “Geometry of the
Outer Sphere”. The “lower” tetrahedron (with the apex
oriented in the +z direction) will consist of the primed vertex
points and the “upper” tetrahedron (with the apex oriented in
the -z direction) will consist of the unprimed vertex points.

As shown in FIG. 8 each vertex will have a ring of sensors
112 arranged about it equilaterally along with an electro-
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magnet 110. These sensors will be present only at the
vertices of the upper tetrahedron. The lower tetrahedron will
not have sensor pods, and will only have electromagnets.

The diagrams in FIG. 8 represent the vertices of the two
tetrahedrons as seen from above the alpha vertex (looking
down the 7 axis). The lower tetrahedron is upside-down. At
each vertex will be three sensors 112 that will detect the
presence of inner sphere’s 102 magnets 108 as they rotate
into each sensor’s 112 “field of view.” The inner triangle on
the left represents the position of the sensors (S;, S,, S;)
which will relate to the alpha vertex. The inner triangle on
the right represents the position of the sensors (S,', S,', S;")
which will relate to the alpha prime vertex (they are dis-
played as grayed out because the alpha prime vertex is
hidden by the base of the lower tetrahedron). Notice that
while the orientation of the lower tetrahedron is reversed to
allow the vertices to diametrically oppose each other across
the sphere housing, the sensors for the primed points are not.
This is done so that control for the equivalent of six sensors
at each vertex pair may be provided.

The only restriction this imposes on the orientation of the
magnets of the inner sphere (the rotor 102) is that for each
permanent magnet 108 on the rotor 102, there must be
another permanent magnet 108 diametrically opposed on the
other side of the rotor 102. To achieve magnetic levitation
(which is optional), the outer sphere 114 must be magnetized
with the same magnetic pole pointing in toward the center of
the sphere. As in the previous embodiments, the permanent
magnets on the rotor 102 must each have the same pole
pointing outward.

The center of each electronic control module 106 “sensor
pod” will host a small electromagnet 110 that is energized
when certain sensors 112 detect the presence of a magnet on
the rotor 102. Energizing the electromagnet 110 will cause
the rotor 102 to accelerate in the correct direction as speci-
fied by the “Control Axis”.

Because the magnets 108 embedded in the rotor 102 are
also opposed, that means that each pair of opposed vertex
pods as may be treated as one system. Either S, or S,' can
be independently activated (across the sphere) and it will
have the same effect as if six sensors 112 were all located
hexagonally around the alpha electromagnet 110.

In the prototype configuration a ring of'six (6) sensors 112
is used. FIG. 9 illustrates intersecting fields of view for the
sensor regions and represents the sensor 112 configuration
for any given vertex pair. The solid gray circles represent the
field of view for the three sensors 112 related to the alpha
vertex. Dotted circles represent the sensor field of view for
the sensors 112 related to the alpha prime vertex. Actual
position of the virtual sensor is across the sphere and directly
opposed to the sensor 112 as indicated here.

The fields of view can be shaped so that there is a regular
distribution across all sensors 112. The idea is to make the
area in each sensor 112 act like a slice of the overall area
around the electromagnet 110 so that the combination of two
adjacent sensors 112, such as S, and S;', can produce its own
directional area (S, ;). That way there can be twice as many
possible degrees of motion as there are sensors.

Wedges can be inscribed onto the circles that represent the
field of view for the sensors. If the sensor’s field of view is
a circle of radius f, then the inscribed wedge will have radius
2f.

FIGS. 10A-10B illustrates a method used to inscribe the
wedges onto the six (6) sensor circles in the prototype
configuration, showing the geometry of the sensor fields of
view.
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In the prototype configuration, the angle at the apex of the
wedge encompassing the field of view of one sensor will be
90°, the distance to the center of the sensor field of view is

P

Note that the angle is determined by the following analy-
sis. Three equal angles 0 plus another three equal angles ¢
equal 360°. Which equates to 36+3¢=360°. Additionally
0=3¢. Substituting this for ¢ in the previous equation pro-
duces 30+0=360°. Which reduces to 40=360°. Which means
6=90°.

Then the radius of g will be

g1
The distance between the sensor points of the three
co-located sensors 112 should be equilateral and based on
the radius from the center of the system to the center of the
sensor 112. The angle between two co-located sensors 112 is
120°. Using the law of cosines one can derive the distance
between sensor centers.

Since the sensors are equilaterally spaced, the distance from
the center point of a sensor to the adjacent sensor is

var

and half that value marks the width of one wedge at its
widest point.

V2 1
- = ﬁf
Implementation

This section describes the specific geometry of the pro-
totype configuration.

Assuming the distance in diameter between opposite
sensors on the sensor pod is 1.4224 cm (0.56"), the distance
from the center to one sensor is calculated as 0.7112 cm
(0.28"). Then f becomes

0.7112 ecm
V2

and

=0503cem=f

g=0208 cm

The distance between adjacent sensors is 0.7112 cm (0.28")
and the distance between co-located sensors is 1.006 cm
(0.396™).

If the standoft b between the ball and the sensor is 1.5 mm
(0.059"™), then the sensor’s field of view angle 0 needs to be
a little more than 168 degrees.
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b
0=(n—tan*1—] =168°
f

This creates twelve regions around the vertex each of 30°
and each region represents a slice of either one sensor alone,
or the intersection of two sensors 112. FIG. 11 illustrates
sensor wedges for intersecting fields of view and extrapo-
lates this concept further.

FIG. 11 shows the layout and shape of the sensor field of
view for the given configuration. The angle of the field of
view for each sensor is 90°. The different colors mentioned
are illustrated in this figure and other figures with different
hatchings or speckling. The blue areas indicate the fields of
view for sensors S,, S,, and S;. The reddish area represents
the virtual field of view for S,', S,', and S;' respectively.
Purple areas represent the points at which the local and
virtual fields of view intersect each other. To get S, the
controller must detect a magnet in S, and not in S;' or S;'.
To get the area between S, and S;' (S,;.) the controller must
detect the magnet in S, and S;' simultaneously. So, the
controller 106 will need to activate either three sensors 112
or two sensors 112 in order to detect in 12 directions.

It will continue to be difficult to refer to each wedge in
terms of the sensors to which it is related. Therefore, the
wedges are numbered starting with the S, ;' wedge as W, and
continuing counter clockwise around the circle until reach-
ing W,,. This is shown in FIG. 12, which illustrates re-
designated sensor wedges for intersecting fields of view.

An optional “Cutout” restricting the sensor’s field of view
at each sensor point will be three wedges cut from a circle
with radius of

2f

The angle of each wedge will be 90° and they will be
spaced 30° apart from each other around the circle. There is
an inner circle representing the electromagnet 110 at this
given vertex point. The radius of this circle is g and it must
be large enough to accommodate the radius of the electro-
magnet 110. FIG. 13 illustrates field of view cutouts 1320,
1322, 1324 for the prototype configuration’s sensors 112 and
electromagnet 110.

Three small circles inscribed in each wedge may be used
in place of the wedges to reduce the area removed from the
outer sphere, and to make the sensor holes easier to drill.
However this will also increase the chance of getting a
“miss” from the spinning sphere. FIG. 14 illustrates alternate
fields of view using simple drill holes 1430, 1432, 1434.

In each of these diagrams note that the inner circle is of
radius g. This value should represent the radius of the
electromagnet. The diameter of the inscribed circles will be

1=V2)r

What is described here, using its own internal geometry,
is the structure of the sphere at each vertex affyd as
described in the “Geometry of the Outer Sphere”. Each
vertex has been defined in terms of a plane tangent to the
sphere at that point in space and, as defined in Basis at Each
Vertex the plane has been assigned a pair of basis vectors
representing the coordinate space of the plane with the
vertex at its origin. These basis vectors allow us to define a
two dimensional x-y Cartesian coordinate space for the
sensors that will allow us to perform control operations
based on impulses received from the sensors 112. The
impulses occur when a permanent magnet 108 in an embodi-
ment crosses a sensor’s 112 field of view.
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The next step is to determine which control sensors 112 to
activate under which conditions in order to achieve the
direction of motion as specified by the “Control Axis”. A
first step is to determine, based on the angle of the desired
direction of rotation, which wedge sections the direction of
rotation is over. From that it is next determined which
sensors 112 to activate. Activating a sensor 112 will, when
the sensor 112 detects the presence of a magnet 108,
energize the electromagnet 110, thereby pulling the rotor
102 rotation toward the origin. The wedge sensors 180°
opposed to the desired direction of rotation will need to be
activated.

Determination of the Control Wedge

In the section named “Geometry of the Vertex Sensors”,
the control area using the diagram shown in FIG. 15 was
described. FIG. 15 illustrated sensor wedges for intersecting
fields of view. FIG. 15 describes twelve (12) control regions
that coincide with one of 6 sensors arranged at each vertex
around an embodiment of the spherical motor system. The
origin of this coordinate system corresponds to one of the 4
vertices of the sensor tetrahedron as described in “Geometry
of the Outer Sphere”. The plane of the coordinate system is
tangent to an embodiment of the spherical motor system,
with the z axis pointing out of the page and intersecting the
origin (center) of an embodiment of the spherical motor
system. The orientation of the x and y axis is dependent on
the sensor vertex and is described in Basis at Each Vertex.

In “Projection of Directional Vectors”, the (x, y) coordi-
nates of the Control Axis in the coordinate space described
above is calculated. The next task is to determine the control
wedge in which the given control vector lies. To do that the
inverse tan( ) function(tan™) is used

)

Which returns the angle of the vector given by (X, y).
Assuming the angles will be returned in radians. Since

r=2
X
then the following reductions for the prototype configuration

are possible from the equations given in “Projection of
Directional Vectors”.

_ Uy
=T
-a

)

o U
7 U
3a

-(p+2v27)
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-continued
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i é(\/?a—b+4\/7c)

_ =3a+V30)
h V3a-b+4vV2c

Ty

Note that the r terms from the directional vector projec-
tions reduce out of the given relationships, leaving the ratios
entirely in terms of the components of the Control Axis.

Given the results of the above equations, the wedge can
be determined using the following table. This table will have
to be refactored if the configuration of the sensors 112
changes. The table contains angle values from 0 to 2=
(which is in the middle of the W, wedge). Therefore W, is
represented both at the beginning and end of the table.

TABLE 6

Wedge determination based on desired angle reference

Direction  Activate If Angle (radians) Ref
W, S, +8; 00 0
W, Sy’ + 83 0.26179938779914943653855361527329 n
12

Wio S,' + ~S, + 0.78539816339744830961566084581988 n
~S; )

Wi, S, + 8, 1.30899693899574718269276807636650  5x

12
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TABLE 6-continued

Wedge determination based on desired angle reference

Direction  Activate If Angle (radians) Ref
Wo S) +~S5' + 1.83259571459404605576987530691300  7x
NSS' E

W, S, + 83 2.3561944901923449288469825374596 3r
ry

W, S3' + ~S; + 2.8797932657906438019240897680062 1lx
~S 12

W, S, + 83 3.4033920413889426750011969985528 137
12

W, S, +~S)' + 3.9269908169872415480783042290994 Sr
~83' ?

Ws S;'+ 8,  4.450589592585540421155411459646 17n
iV

Wg S, + ~S; + 4.9741883681838392942325186901925 197
~S; 12

W, S,'+ 83  5.4977871437821381673096259207391 T
4

Wy S3, ~8)',  6.0213859193804370403867331512857 237
~S iV

Wy S5, 83 6.283185307179586476925286766559 2n

Table 6 gives the values for the upper boundary of each
directional wedge. The reference angle describes the true
value of the wedge boundary in terms of pi. The “Direction”
column indicates the wedge in which the “Control Axis”
projection lies.

The “Activate If” column describes the conditions under
which the vertex electromagnet should be energized in order
to rotate the sphere in the proper direction. In this case the
Sensors immediately aft of the given directional wedge are
used to achieve the intended rotation. The tilde character (~)
indicates that the sensor must NOT be active.

As an example, in order to achieve a rotation in the
direction of W, the S,' sensor 112 must be active and S, and
S; must both NOT be active. Then, when the electromagnet
is energized it will pull the sphere in the W, direction. To
pull the sphere in the W, direction both the S,' and S,
sensors 112 must be active.

Imparting Momentum

When a sensor 112 detects the presence of an magnet 108
in a certain desired control wedge, the control system will
energize the electromagnet 110 for a period of time, impart-
ing momentum to the sphere 102 in nearly the desired
direction. The electromagnet 110 is “pulsed” to transfer
momentum either to or from the rotor in the desired vector.
FIG. 16 illustrates the status of the rotor 102 when a sensor
112 detects the presence of a magnet 108.

To transfer momentum the electromagnet 110 is energized
when the sensor 112 detects the presence of a permanent
magnet on the rotor. Regardless of the direction the magnet
108 is currently going a rotational force will be applied to
the rotor 102 until the magnet 108 has traveled the distance
f. Then the electromagnet 110 will be deenergized. During
this time period an average force of F is applied to the
rotation of the rotor 102. The actual force will increase as
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approaches 0. For now it is assumed that a constant average
force applied of F. Given the mass of the rotor 102 m, it can
be determined that the acceleration dv applied to the rotor
102 in the direction from the sensor 112 to the electromagnet
110 as:

This gives the change in linear velocity per electromagnet
pulse (deltaV). The next parameter needed to make this
work is the current linear speed of the rotor 102 1,. This is
used to compute the amount of time t that F will be applied.

Given this t, the momentum applied p to the rotor 102 in
the given direction for each pulse can be calculated.

p=Ft=mat=ml,

As the actual speed of the rotor 102 increases, the velocity
that is imparted by a single electromagnetic pulse decreases.
The next step is to apply the pulse a number of times n to the
current speed of the rotor 102 in order to impart our desired
velocity of 1.

HP=Protar

PG oy

Consequently, m divides out and n can be determined for
each sensor pod. Note that 1, indicates the current speed of
the ball at the alpha vertex 1, indicates the new commanded
speed of the ball at the alpha vertex.

n, = la vertex
T laO
1,8 vertex
ng = T
_ ly vertex
y = lyO
e = 16 vertex
¢ lso

By energizing the electromagnet 110 a number of times n
as each permanent magnet 108 is detected by the sensor 112,
the desired momentum is transferred to or from the rotor
102.

By using only the sensors as described in the section titled
“Determination of the Control Wedge” a momentum may be
imparted with an accuracy of £15°. The next step is to
examine a way in which the accuracy of the control algo-
rithm given the implementation described above can be
increased.

Linear Combination of Applied Forces

The desired rotational angle for the imparted momentum
is given in terms of the “Control Axis” by the following
formulas as derived in the section named “Determination of
the Control Wedge”.
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Aq =tan ' (T,)
()

Ag = tan™! (Tp)

. 71( 3a ]
=tan
b+2V2 ¢

Ay =tan ()
o 3la-v3P)
=tan | -——mm—
\/?a+b—4\/70

As =tan ()
o 3a-V30)
=tan B ———m]
—\/?a+b—4\/70

Ay =tan ™ (T,)

Ay =tan™ (Ty)

:tan’l(— 3a ]
b+2W2 e

Ay =tan"!(Ty)
o 3la-v3p)
=tan —_—
V3ia+b-4aV2 e

Ay =tan H (Ty)
» 3a-V3b)
=tan B ——ma]
V3a+b-4yV2 ¢

However, the given implementation is only capable of
imparting momentum in 30° increments. Consequently, it is
necessary to develop a way to increase the accuracy of the
desired momentum imparted to the rotor 102.

The first thing to determine is the error by which the
desired angle A differs from the angle at which W can be
imparted. Since the control wedge in which the angle resides
can be determined, it is known that the difference e between
the angle of momentum imparted W,, and the desired angle
of momentum A is +15°. The following formula will deter-
mine the error angle.

e, =AW,
ep=Ap-W,
e, =4,~W,
ey=As-W,
e =AW,
ep=dg—W,
e, =AW,

ey=Ag-W,

Note that W, is the angle as determined by the wedge
found in section “Determination of the Control Wedge” for
the given Angle A. Table 7 gives these angles.
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TABLE 7
Wedge Angle
Wy 0
Wio z
6
Wiy z
3
W Ed
2
W, 2r
3
W, Sz
6
W, .t
W, Ir
6
Ws An
3
We 37
2
Wy Sz
3
W 117
6

It is noted that the index n of W, time n/6 will give the
angle of imparted momentum. FIG. 17 illustrates a linear
combination of vectors to achieve the desired directional
momentum.

If the wedges are stripped, leaving only the vectors, the
determination shown in FIG. 18 can be made.

The ratio of the control wedge magnitude to adjacent
wedge magnitude that will produce the desired angle offset
e is determined. If it is assumed that the length of Desired
Direction vector A is 1, and e is derived by subtracting the
desired angle from the angle of the Control Wedge vector C,
then this should be enough information to determine all
aspects of the given triangle. This is because it is already
known that the angle between the Control Wedge vector and
the Adjacent Wedge vector D is 180°-30°=150°. That makes
the third angle 180°-150°-e=30°-e. Using the law of sines
this produces the following relationship.

Since we’ve made the Desired Direction Vector of length
1, the C and D vectors become as follows.

sin(= —e
C= 6’ :ﬁ’sin(z —e) where f =
Sn 6 Sn

sin— sin—

6 6

=2
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Do sine . " B -2
= ‘Sﬂ_ﬁsmewereﬁ_ 57 =
sin—e sin—

Note that C will always produce a positive sin as long as
/6ze=z-m/6. A will always have the same sign as e. The
denominator is a constant in both cases and the sine of 57/6
is the same as the sine of @/6, which is 0.5. The reciprocal
of this is §§ and is 2. A magnitude ratio for both the Control
Wedge vector and the Adjacent Wedge vector and the sign
of the Adjacent Wedge vector indicates which adjacent
Wedge to use. What this gives us is the ability to determine
how much force to apply in each direction to achieve a
vector in the correct direction and with the correct magni-
tude.

Given a number of pulses n to obtain the desired momen-
tum, the values above are used to determine the number of
pulses to use in each wedge direction to produce the desired
rotational direction.

ne = Znsin(g - e)

np = 2nsine

The method of controlling the reaction sphere to a fairly
fine degree is now defined, given our implementation.

Mapping the Wedge Designations onto the Control Pods

FIG. 19 illustrates the placement of the sensor pods 112
in an embodiment of the stator 104 cage. Note that all four
Sensor vertices are in the “top” half of the stator 104 cage.
If the top vertex is designated as a, then the four other
vertices are ', v', and d' respectively. This maps the sensor
pods PWBs against the vertices described in the sections
above. The next step is to map the actual sensors 112 onto
the sensor designations given in the section above.

FIG. 20 illustrates the PWB design of the sensor pods
(e.g., hall effect sensors 112). Signal amplification circuitry
(x6) 190 and wiring connections 195 to processing circuits
are also illustrated. In every case the transformation of the
coordinate axis will yield a sensor pod with the axis orien-
tation as given below.

Determining the Speed of the Rotor at Each Vertex

Embodiments implement a method to determine the speed
of the rotor 102 by reading the position of a magnet 108 at
each sensor pod 112 (i.e., vertex). Reviewing the field of
view pattern for the vertex sensors 112 developed in section
“Geometry of the Vertex Sensors”.

The dashed arrow in FIG. 21 represents the path of a
magnet 108 as it passes through the field of view of the
vertex sensors 112. Assuming that the sensors 112 are time
sampled as the magnet 108 passes by, the following table of
positive sensor readings would be derived.

TABLE 8
Table of positive sensor readings over time
S1 S2 S3 N S2' S3'

TO

T1 X
T2 X
T3 X
T4 X
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TABLE 8-continued

Table of positive sensor readings over time

S1 S2 S3 ST S2' S3'

R R

—
©
P

—
o
[l I I Il

M

T19

What Table 8 shows are the positive sensor readings for all
six sensors 112 through the path as illustrated by the dashed
arrow in FIG. 21. The distance between the sensors 112 is
known, however, this magnet charts four chords across the
sensor vertex. The question is asked whether the relationship
between midpoints of the chords and the centers of the
circles can be extrapolated.

An arbitrary example starts with two circles of radius r,
and r, whose centers are d units apart (see FIG. 22). One line
that passes through each circle such that a chord is formed
in each (That is, the line intersects each circle at exactly two
points).

It is known from standard geometry that the radius r that
is perpendicular to the chord 2c also bisects the chord
(producing c). It is also known from geometry that the
equation of the height h of the chord is given as

H :r—\/m
If h+g=r, then g=r-h and therefore

gV

In the above example d1+d2=d. If a line parallel to the line
segment intersecting the centers is extended up until one
endpoint meets the midpoint of one of the chords, a right
triangle that has a hypotenuse of d, and a height of gl+g2 is
created. The distance m between the chord midpoints is as
follows.

mzzdz—(gl‘*gz)z:dz—(\/rl —C1 +\/V2 -c°)

As will be the case, ¢ is known in terms of timing only.
It is known how much time was spent going from ¢, and c,
and the intervening time between. In the case of the sensor
fields of view, all r’s are the same but the ¢’s are not.

Performing a Maneuver

The following applies some of the information derived
above in a practical example.

The example starts with a vehicle free floating in space.
It has a known coordinate axis originating at the vehicle’s
center of mass O and is expressed in terms of orthonormal
unit vectors i, j, k in which positive j points at the vehicle’s
front and positive k points at its top. Positive i, therefore,
points at the vehicle’s right side.

The vehicle also has a known attitude expressed in terms
of a quaternion Q, representing the rotation of the coordinate
axis from some external root attitude (i.e., Earth center, Sun
Point, etc.). This quaternion is given as follows.

Qo=(WoXoY0.Z0)
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The magnitude of the vector part of this quaternion |[V|
is given by

Vol Vo vz,

Then the axis A, and angle w, of these values is given by
the following.

X0 Yo 20 )

Ag= [, 2 10
‘ (||V0|| Voll” MVoll

o = 2cos ! (wp)

Next the new desired attitude of the vehicle is defined as
another Quaternion Q,. This quaternion represents the new
attitude of the spacecraft in the same coordinate space as Q,,.

Q1 = (w1, X1, y1. 21)

Vil = v/ +f + T+ 25

_( X1 Y1 <1 )
=T o o
il vl ivall

20

wy = 2cos ™! (wy) 25

The example next determines is the error quaternion Q,.
The Error quaternion is the quaternion rotation that would
produce the new desired attitude Q, from the current known
attitude Q. Given this the following relationship applies.

30

0Q.=0)

To solve this equation for Q, the solution must multiply by

. 35
the inverse of Q.

2
T

=(Q0) 'O

Q.
40

The inverse of a quaternion is defined, in terms of its

components as follows. 45

Wwo —Xo0 —Yo

-20 ]
QoI 11Qol* ™ 1Qoll* " 11Qol*

(e :(

50
The magnitude of the Quaternion ||Q,|| is defined as follows

IQoll=V wo+x6™ 0™ +207

using the rules of quaternion multiplication to multiply the
two quaternions together.

It is known how to calculate the error quaternion between
two rotational attitudes. This is the rotation in the external
coordinate frame applied to the current attitude Q, in order
to produce the new desired rotation Q,.

On this vehicle, the example assumes that an embodiment
of the spherical motor 100 has been mounted to the vehicle.
There will be a constant unit Quaternion Q, that represents
the rotation of the spherical motor 100 coordinate axis
relative to the coordinate axis of the vehicle. Ideally, this
quaternion would represent a zero rotation (-1, 1, 1, 1),
meaning that the spherical motor 100 is oriented with its

55

60

65
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coordinate axis in the same direction as the vehicle’s coor-
dinate axis. However, if this is not the case, then

O =(wp%,¥,%,)

QA=W x4y, 42,7=1

Because it is a unit quaternion, its inverse is the same as its
conjugate

(@)@ =W, =% 2,)

The error quaternion is rotated into the coordinate space
of the spherical motor 100. To do this, the inverse of the
spherical motor 100 quaternion (Q,)™" is applied to the error
quaternion Q,. The result Q_, derived using quaternion
multiplication as described above, is the quaternion that
describes the desired rotation applied to the spherical motor
100 in the spherical motor 100 coordinate system.

0, =00 =(Wor o yaz.)

The magnitude of the vector part is given as

Vel=Vxtytze

The axis of this quaternion is given as

A, :( Xc Ye Zc )

IVell™ Vel Vel

The angle 6 is given by
0=2 cos}(w,).

These values represent the Control Axis on which to
perform the rotation and the angle to rotate through.

The maneuver is a three part process. First, impart a
rotational momentum to the vehicle. Next, wait a period of
time while the vehicle rotates through the desired angle.
Finally, reverse the rotational momentum.

If it assumed that S seconds will be spent performing the
maneuver, then must 0 radians are traversed in S seconds.
This produces the desired angular velocity of

Ul

Now all the values needed to command the reaction
sphere to perform this maneuver are present.
. The vehicle time (t,) is marked
. Command the reaction sphere to (m, A,).
. If vehicle time reaches t,=S/2 then go to step 8.
. Otherwise monitor the reaction sphere telemetry until
the command count is zero for all vertices
. Mark the new vehicle time (t,)
. Compute delta time as (t,-t;).
. Wait until vehicle time t,=S-2(t,-t,)
. Command the reaction sphere to (-m, —-A,).
Although the embodiments described throughout this
disclosure utilize a spherical motor system for three-axis
control and stabilization of satellites, the spherical motor
system may alternatively provide three-axis control and
stabilization of other vehicles such as ground (e.g., cars,
trucks, tanks, etc.), water (e.g., ships, submarines, etc.), or
air (e.g., airplanes, helicopters, etc.) vehicles.
The contemplated modifications and variations specifi-
cally mentioned above are considered to be within the spirit
and scope of the present invention.

W=

o~ N
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Those of ordinary skill in the art will recognize that
various modifications and variations may be made to the
embodiments described above without departing from the
spirit and scope of the present invention. It is therefore to be
understood that the present invention is not limited to the
particular embodiments disclosed above, but it is intended to
cover such modifications and variations as defined by the
following claims.

The invention claimed is:

1. A spherical motor system for control and stabilization
of'a vehicle in three orthogonal axes, the system comprising:

a spherical rotor having permanent magnets positioned in

evenly-spaced antipodal pairs, wherein each of the
permanent magnets are oriented with the same mag-
netic pole facing outward from a center of the rotor;

a stator having electromagnets positioned in evenly-

spaced antipodal pairs that spatially correspond with
the permanent magnets, the stator further having mag-
netic sensors surrounding at least one of each electro-
magnet antipodal pair to detect one of the permanent
magnets; and

a control system that controls timing and duration of

energization of the electromagnets based on the detec-
tion of the one of the permanent magnets with the
sensors to provide the electromagnets with the opposite
magnetic pole of the permanent magnets in order to
attract the permanent magnets whereby momentum is
transferred between the rotor and the stator along a
controlled vector.

2. The spherical motor system of claim 1, wherein the
sensors are positioned along the stator such that they detect
the permanent magnets only on one hemisphere of the rotor
at any time.

3. The spherical motor system of claim 1, wherein the
rotor comprises non-magnetic material between the perma-
nent magnets.

4. The spherical motor system of claim 3, wherein the
non-magnetic material is selected from the group consisting
of plastic, aluminum, 300-series stainless steel, tungsten,
and combinations thereof.

5. The spherical motor system of claim 1, wherein the at
least one electromagnet is centrally positioned within a ring
of the sensors.

6. The spherical motor system of claim 1, wherein the
sensors are hall effect sensors.

7. The spherical motor system of claim 1, wherein the
stator includes a hollow spherical shell surrounding the
rotor.
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8. The spherical motor system of claim 7, wherein the
hollow spherical shell comprises a diamagnetic material.
9. The spherical motor system of claim 1, wherein the
vehicle is a satellite, and wherein the stator is connected to
the satellite.
10. A method for controlling and stabilizing a vehicle in
three orthogonal axes, the method comprising:
positioning permanent magnets along a spherical rotor in
evenly-spaced antipodal pairs, wherein each of the
permanent magnets are oriented with the same mag-
netic pole facing outward from a center of the rotor;

positioning electromagnets along a stator in evenly-
spaced antipodal pairs that spatially correspond with
the permanent magnets;

positioning magnetic sensors along the stator that sur-

round at least one of each electromagnet antipodal pair:
detecting one of the permanent magnets with the sensors;
and

controlling, with a control system, timing and duration of

energization of the electromagnets based on the detect-
ing of the one of the permanent magnets with the
sensors to provide the electromagnets with the opposite
magnetic pole of the permanent magnets in order to
attract the permanent magnets whereby momentum is
transferred between the rotor and the stator along a
controlled vector.

11. The method of claim 10, wherein the sensors are
positioned along the stator such that they detect the perma-
nent magnets only on one hemisphere of the rotor at any
time.

12. The spherical motor system of claim 10, wherein the
rotor comprises non-magnetic material between the perma-
nent magnets.

13. The method of claim 12, wherein the non-magnetic
material is selected from the group consisting of plastic,
aluminum, 300-series stainless steel, tungsten, and combi-
nations thereof.

14. The method of claim 11, wherein the at least one
electromagnet is centrally positioned within a ring of the
Sensors.

15. The method of claim 10, wherein the sensors are hall
effect sensors.

16. The method of claim 10, wherein the stator includes
a hollow spherical shell surrounding the rotor.

17. The method of claim 16, wherein the hollow spherical
shell comprises a diamagnetic material.

18. The method of claim 10, wherein the vehicle is a
satellite, and wherein the stator is connected to the satellite.
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